Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Resour Conserv Recycl ; 157: 104748, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32494108

RESUMO

The concept of resources or materials dissipation after their use in the technosphere has been increasingly considered in life-cycle based studies, applying Substance and Material Flow Analysis (SFA and MFA), Input-Output Analysis, and Life Cycle Assessment (LCA). However, there is currently no common understanding of what a dissipative flow is. This article first reviews 45 publications to describe the status of resource dissipation in life-cycle based studies, discussing how resource dissipation is usually defined, which temporal perspective is considered, which compartments of dissipation are distinguished, and which approaches (including the implementation of parameters) are considered to assess resource dissipation in a system. Moreover, this article proposes a comprehensive definition of resource dissipation, building from the literature review and focusing on abiotic resources. It then discusses this definition with respect to its potential implementation in LCA considering today's existing Life Cycle Inventory (LCI) datasets and best practices. Overall it shows that the LCA framework may be well suited to assess abiotic resource dissipation. In particular i) the compartments of dissipation usually considered in the literature are covered in LCA, and ii) LCI databases could be a source of information to be further used to quantify a set of flows defined as "dissipative", as commonly considered in SFA/MFA studies. However, major challenges are still faced before any potential routine implementation in LCA. The article accordingly discusses the potential way forward in the short-term (development and test of possible approaches), mid-term (towards satisfactory robustness, and consensus) and long-term (large-scale changes of LCI databases).

2.
Resour Conserv Recycl ; 154: 104426, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32127729

RESUMO

The concept of a circular economy has been widely accepted by governments and industries. In Europe, the European Commission adopted the Circular Economy package in 2015. The Ecodesign Directive has been identified as one of the most suitable legislative tools for achieving some of the objectives in the package because it has the potential to translate the circular economy principles into specific product material efficiency requirements. This paper applies the Ecodesign policy process to "enterprise servers" to illustrate how circular economy strategies can be implemented by European product policies. Indeed, the paper introduces a potential novel approach to "operationalize" circular economy principles in product policies. The evolution of the material efficiency requirements for a more circular economy is described up to their final formulation, which is the one in the published Ecodesign regulation. This legal act includes requirements on design for disassembly, firmware availability, data deletion, and presence of critical raw materials. The process for enterprise servers has been successful as the early discussions between stakeholders, policymakers and experts, supported by appropriate metrics along an iterative debate, comes to the publications of material efficiency requirements in a regulation. This study represents a 'first-of-a-kind' experience, and sets precedents for the development of similar requirements for other product groups.

3.
Waste Manag ; 91: 156-167, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31203937

RESUMO

Although the amount of waste photovoltaic (PV) panels is expected to grow exponentially in the next decades, little research on the resource efficiency of their recycling has been conducted so far. The article analyses the performance of different processes for the recycling of crystalline silicon PV waste, in a life cycle perspective. The life cycle impacts of the recycling are compared, under different scenarios, to the environmental benefits of secondary raw materials recovered. Base-case recycling has a low efficiency and, in some cases, not even in line with legislative targets. Conversely, high-efficient recycling can meet these targets and allows to recover high quality materials (as silicon, glass and silver) that are generally lost in base-case recycling. The benefits due to the recovery of these materials counterbalance the larger impacts of the high-efficiency recycling process. Considering the full life cycle of the panel, the energy produced by the panel grants the most significant environmental benefits. However, benefits due to high-efficient recycling are relevant for some impact categories, especially for the resource depletion indicator. The article also points out that thermal treatments are generally necessary to grant the high efficiency in the recycling. Nevertheless, these treatments have to be carefully assessed since they can be responsible for the emissions of air pollutants (as hydrogen fluoride potentially released from the combustion of halogenated plastics in the panel's backsheet). The article also identifies and assesses potential modifications to the high-efficiency recycling process, including the delocalisation of some treatments for the optimisation of waste transport and the introduction of pyrolysis in the thermal processing of the waste. Finally, recommendations for product designers, recyclers and policymakers are discussed, in order to improve the resource efficiency of future PV panels.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Vidro , Plásticos , Reciclagem , Silício
4.
J Clean Prod ; 215: 1112-1122, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31007415

RESUMO

The available literature on average lifetimes and failure modes of household appliances is mainly based on results of surveys conducted among end-users, but very little precise information can be found on specific failure modes and repair rates. The main objective of this study is to provide quantitative data about frequent failures and average service lifetimes of two household appliances, through the analysis of repair services performed by professional repair operators. We based our analysis on available datasets provided by a representative independent repair centre based in Europe, and we focused on the failures most frequently occurring and the potential repair or discard of the appliances. A database of about 11,000 diagnoses on defective washing machines and dishwashers was analysed, and frequent failure modes and repair rates were identified. The analysis was supported by a tailored visualisation of results. Concerning washing machines, recurring failures diagnosed by the repair operator regarded the electronics, shock absorbers and bearings, doors, carbon brushes and pumps. While the highest repair rates (repaired devices over total diagnosed devices with a specific failure mode) were observed for doors, carbon brushes and removal of foreign objects, the lowest rates were observed for bearings, drums and tubs, circulation pumps and electronics. Regarding dishwashers, recurring failures involved pumps, electronics, aquastop and valves, foreign objects and doors. The lowest repair rates, however, were again observed for circulation pumps and electronics. We also observed that the average service lifetime of an appliance not repaired by repair centre operators is 12.6 years for washing machines and 12 years for dishwashers. This work brings important knowledge on lifetimes and failure modes of defective washing machines and dishwashers, concerning in particular weak and critical components, but also age of appliances to be repaired. Based on the exercise on the two appliances, we discuss a possible classification scheme for repair services of household appliances, including both information retrieved by professional repair operators and information retrieved through interviews with end-users.

5.
J Clean Prod ; 215: 634-649, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31007414

RESUMO

Traction batteries are a key factor in the environmental sustainability of electric mobility and, therefore, it is necessary to evaluate their environmental performance to allow a comprehensive sustainability assessment of electric mobility. This article presents an environmental assessment of a lithium-ion traction battery for plug-in hybrid electric vehicles, characterized by a composite cathode material of lithium manganese oxide (LiMn2O4) and lithium nickel manganese cobalt oxide Li(NixCoyMn1-x-y)O2. Composite cathode material is an emerging technology that promises to combine the merits of several active materials into a hybrid electrode to optimize performance and reduce costs. In this study, the environmental assessment of one battery pack (with a nominal capacity of 11.4 kWh able to be used for about 140,000 km of driving) is carried out by using the Life Cycle Assessment methodology consistent with ISO 14040. The system boundaries are the battery production, the operation phase and recycling at the end of life, including the recovery of various material fractions. The composite cathode technology examined besides a good compromise between the higher and the lower performance of NMC and LMO cathodes, can present good environmental performances. The results of the analysis show that the manufacturing phase is relevant to all assessed impact categories (contribution higher than 60%). With regard to electricity losses due to battery efficiency and battery transport, the contribution to the use phase impact of battery efficiency is larger than that of battery transport. Recycling the battery pack contributes less than 11% to all of the assessed impact categories, with the exception of freshwater ecotoxicity (60% of the life cycle impact). The environmental credits related to the recovery of valuable materials (e.g. cobalt and nickel sulphates) and other metal fractions (e.g. aluminium and steel) are particularly relevant to impact categories such as marine eutrophication, human toxicity and abiotic resource depletion. The main innovations of this article are that (1) it presents the first bill of materials of a lithium-ion battery cell for plug-in hybrid electric vehicles with a composite cathode active material; (2) it describes one of the first applications of the life cycle assessment to a lithium-ion battery pack for plug-in hybrid electric vehicles with a composite cathode active material with the aim of identifying the "hot spots" of this technology and providing useful information to battery manufacturers on potentially improving its environmental sustainability; (3) it evaluates the impacts associated with the use phase based on primary data about the battery pack's lifetime, in terms of kilometres driven; and (4) it models the end-of-life phase of the battery components through processes specifically created for or adapted to the case study.

6.
Resour Conserv Recycl ; 135: 323-334, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30078953

RESUMO

Circular economy strategies encourage, among others, concrete actions to extend the product lifetime. Product's repair and reuse, and component harvesting for reuse, all require the facilitated access to product components. Consequently, a reduction of the disassembly time and the related costs will increase the economic feasibility of product lifetime extension and therefore increase the viability of a circular economy in industrialised regions. Furthermore, disassembly has the potential to significantly increase the recycling yield and purity for precious metals, critical metals and plastics. For this reason, the European Commission and several ecolabels have considered to include design for disassembly requirements in legislation or voluntary environmental instruments. However, up to date, there is no standardised method to evaluate the ease of disassembly in an unambiguous manner with a good trade-off between the efforts required to apply the method and the accuracy of the determined disassembly time. The article proposes a robust method "eDiM" (ease of Disassembly Metric), to calculate the disassembly time based on the Maynard operation sequence technique (MOST). A straightforward calculation sheet is employed in eDiM to calculate the disassembly time given the sequence of actions and basic product information. This makes the results fully verifiable in an unambiguous manner, which makes eDiM suited to be used in policy measures in contrast to the results of prior developed methods One of the innovative aspects of eDiM is the categorization of disassembly tasks in six categories, which provides better insights on which disassembly tasks are the most time consuming and how the product design could be improved. The proposed method is illustrated by means of a case study of an LCD monitor. The presented case study demonstrates how the proposed method can be used in a policy context and how the calculated disassembly times per category can provide insights to manufacturers to improve the disassemblability of their products. The results also demonstrate how the proposed method can produce realistic results with only limited detail of input data.

7.
Resour Conserv Recycl ; 131: 206-215, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29615829

RESUMO

Durability plays a key role in enhancing resource conservation and contributing to waste minimization. The washing-machine product group represents a relevant case study for the development of a durability test and as a potential trigger to systematically address durability in the design of products. We developed a procedure to test the durability performance of washing-machines as a main objective of this research. The research method consisted of an analysis of available durability standards and procedures to test products and components, followed by an analysis of relevant references related to frequent failures. Finally, we defined the criteria and the conditions for a repeatable, relatively fast and relevant endurance test. The durability test considered the whole product tested under conditions of stress. A series of spinning cycles with fixed imbalanced loads was run on two washing-machines to observe failures and performance changes during the test. Even though no hard failures occurred, results clearly showed that not all washing-machines can sustain such a test without abrasion or performance deterioration. However, the attempt to reproduce the stress induced on a washing-machine by carrying out a high number of pure spinning cycles with fixed loads did not allow equal testing conditions: the actions of the control procedure regarding imbalanced loads differ from machine to machine. The outcomes of this research can be used as grounds to develop standardised durability tests and to, hence, contribute to the development of future product policy measures.

8.
J Clean Prod ; 198: 1545-1558, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31293294

RESUMO

Although the importance of reusing products has been stated frequently, both in legislation and by academics, the scientific literature does not provide comprehensive and systematic methods of assessing the reuse of a generic product from an environmental point of view. Moreover, the definitions of reuse provided in the literature and legislation are not always consistent. This article introduces an original classification of different types of reuse, including some suggested definitions. It then focuses on remanufacturing, a type of reuse in which a used product (or its components) is returned to at least its original performance level. The article describes the development of a method for assessing, from a life-cycle perspective, the potential environmental benefits of remanufacturing energy-related products. The method includes several novel aspects: it helps to analyse possible trade-offs between potential environmental impacts and energy efficiency; it allows the independent modelling of some parameters that influence product reuse; and it can be applied even at the early stages of the design process, when some specifications may not yet have been defined. The environmental impacts of a product's life-cycle stages are used as input parameters for the assessment. The method is then applied to an enterprise server, a case-study product for which remanufacturing is a current market practice. A sensitivity analysis is included to check how uncertainties could affect the overall results. The results of the case study show that remanufactured servers, even those that are less energy efficient, can have lower environmental impacts than new ones. For example, reusing some components (e.g. hard disk drives and memory cards) is environmentally beneficial even if the remanufactured server consumes up to 7% more energy than a newly manufactured server. The case study also demonstrates how the method proposed could be used in the context of product policy discussions.

9.
J Clean Prod ; 168: 1533-1546, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29200663

RESUMO

The aspiration of a circular economy is to shift material flows toward a zero waste and pollution production system. The process of shifting to a circular economy has been initiated by the European Commission in their action plan for the circular economy. The EU Ecodesign Directive is a key policy in this transition. However, to date the focus of access to market requirements on products has primarily been upon energy efficiency. The absence of adequate metrics and standards has been a key barrier to the inclusion of resource efficiency requirements. This paper proposes a framework to boost sustainable engineering and resource use by systematically identifying standardization needs and features. Standards can then support the setting of appropriate material efficiency requirements in EU product policy. Three high-level policy goals concerning material efficiency of products were identified: embodied impact reduction, lifetime extension and residual waste reduction. Through a lifecycle perspective, a matrix of interactions among material efficiency topics (recycled content, re-used content, relevant material content, durability, upgradability, reparability, re-manufacturability, reusability, recyclability, recoverability, relevant material separability) and policy goals was created. The framework was tested on case studies for electronic displays and washing machines. For potential material efficiency requirements, specific standardization needs were identified, such as adequate metrics for performance measurements, reliable and repeatable tests, and calculation procedures. The proposed novel framework aims to provide a method by which to identify key material efficiency considerations within the policy context, and to map out the generic and product-specific standardisation needs to support ecodesign. Via such an approach, many different stakeholders (industry, academics, policy makers, non-governmental organizations etc.) can be involved in material efficiency standards and regulations. Requirements and standards concerning material efficiency would compel product manufacturers, but also help designers and interested parties in addressing the sustainable resource use issue.

10.
Environ Sci Technol ; 49(9): 5310-7, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25867920

RESUMO

Life cycle impact assessment (LCIA) in classical life cycle assessment (LCA) aims at analyzing potential impacts of products and services typically on three so-called areas of protection (AoPs): Natural Environment, Human Health, and Natural Resources. This paper proposes an elaboration of the AoP Natural Resources. It starts with analyzing different perspectives on Natural Resources as they are somehow sandwiched in between the Natural Environment (their cradle) and the human-industrial environment (their application). Reflecting different viewpoints, five perspectives are developed with the suggestion to select three in function of classical LCA. They result in three safeguard subjects: the Asset of Natural Resources, their Provisioning Capacity, and their role in Global Functions. Whereas the Provisioning Capacity is fully in function of humans, the global functions go beyond provisioning as they include nonprovisioning functions for humans and regulating and maintenance services for the globe as a whole, following the ecosystem services framework. A fourth and fifth safeguard subject has been identified: recognizing the role Natural Resources for human welfare, either specifically as building block in supply chains of products and services as such, either with or without their functions beyond provisioning. But as these are far broader as they in principle should include characterization of mechanisms within the human industrial society, they are considered as subjects for an integrated sustainability assessment (LCSA: life cycle sustainability assessment), that is, incorporating social, economic and environmental issues.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Recursos Naturais , Humanos
11.
J Environ Manage ; 93(1): 194-208, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22054586

RESUMO

In the present study, Life Cycle Assessment (LCA) methodology was applied to evaluate the energy consumption and environmental burdens associated with the production of protected crops in an agricultural district in the Mediterranean region. In this study, LCA was used as a 'support tool', to address local policies for sustainable production and consumption patterns, and to create a 'knowledge base' for environmental assessment of an extended agricultural production area. The proposed approach combines organisation-specific tools, such as Environmental Management Systems and Environmental Product Declarations, with the environmental management of the district. Questionnaires were distributed to producers to determine the life cycle of different protected crops (tomatoes, cherry tomatoes, peppers, melons and zucchinis), and obtain information on greenhouse usage (e.g. tunnel vs. pavilion). Ecoprofiles of products in the district were also estimated, to identify supply chain elements with the highest impact in terms of global energy requirements, greenhouse gas emissions, eutrophication, water consumption and waste production. These results of this study enable selection of the 'best practices' and ecodesign solutions, to reduce the environmental impact of these products. Finally, sensitivity analysis of key LCA issues was performed, to assess the variability associated with different parameters: vegetable production; water usage; fertiliser and pesticide usage; shared greenhouse use; substitution of plastics coverings; and waste recycling.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Produtos Agrícolas , Monitoramento Ambiental/métodos , Abastecimento de Alimentos , Agricultura/métodos , Agricultura/organização & administração , Agricultura/estatística & dados numéricos , Política Ambiental , Itália , Inquéritos e Questionários
12.
Integr Environ Assess Manag ; 6(1): 52-60, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19558196

RESUMO

The paper presents an application of the Life-Cycle Assessment (LCA) to the planning and environmental management of an "eco-industrial cluster." A feasibility study of industrial symbiosis in southern Italy is carried out, where interlinked companies share subproducts and scraps, services, structures, and plants to reduce the related environmental impact. In particular, the research focuses on new recycling solutions to create open recycling loops in which plastic subproducts and scraps are transferred to external production systems. The main environmental benefits are the reduction of resource depletion, air emissions, and landfilled wastes. The proposed strategies are also economically viable and they suggest cost abatement for the involved companies. This research shows the need for a multidisciplinary approach to data processing and to complexity managing of the investigated systems. In this context, life-cycle thinking is required to be promoted throughout the economy, as well to be as a part of all decisions on products and other criteria such as functionality, health, and safety. The Life-Cycle Assessment approach can be assumed as a methodology for influencing decision makers to make sustainable choices.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Indústrias
13.
Environ Manage ; 38(3): 350-64, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16845555

RESUMO

Over the last decade, researchers paid much attention to concepts such as Design for Environment, Extended Producer Responsibility, Responsible Chain Management, and Eco-design. Many management tools and standards (such as EMAS, ISO 14001, LCA, EPD, Ecolabel) have been developed to support companies in the evaluation and management of their environmental performance and to pursue continual environmental improvement. The more recent development of the aforesaid fields looks at interorganizational environmental management. Such an approach can complement the more traditional intraorganizational corporate environmental management approaches and tools. A typical example of this new trend is the Product Oriented Environmental Management System (POEMS), which represents the natural evolution of the above-mentioned tools, combining the features of EMS, EPD and Ecolabel. Although the structure of the POEMS is still not standardized, many experimental applications have yet been carried out in Europe. In developing a POEMS, a company needs to determine all of the environmental impacts caused at all life-cycle stages of the product and, ideally, to reduce all of them through a continual commitment. The aim of the present study was to perform a survey of the developed POEMS models and to analyze their peculiarities and drawbacks in the application to Small and Medium Enterprises. A case study regarding an Italian winery company is presented. The study analyzes the structure and the activities of the examined firm, in order to estimate direct and indirect environmental impacts following a life-cycle approach. The chosen functional unit is a 0.75-L bottle of red wine. The article also suggests some solutions to improve the environmental performances of the firm's products.


Assuntos
Indústria Alimentícia/normas , Vinho , Dióxido de Carbono , Meio Ambiente , Fermentação , Itália , Rotulagem de Produtos/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...